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Changing climates are altering the structural and functional components of forest ecosystems at an unprece-
dented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable
use of forest resources beyond timber production. As a result, the science and art of silviculture needs to
adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the
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application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a
process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic
view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present
how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and
functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural
measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance
of developing state-of-the-art models designed to take into account the effects of changing environmental
conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance
for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable.
We conclude by presenting key steps towards the development of new tools and practical knowledge that
will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions
into three main categories: re-examining existing silvicultural trials to identify key stand attributes associated
with the resistance and resilience of forests to multiple stressors, developing technological workflows and
infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative
silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies
are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and
anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired
outcomes in rapidly changing realities.

Introduction
Silviculture has traditionally been defined as the ‘science and art’
of growing and tending forest crops (Nyland 1996). This refers
to both the theory and practice of controlling the establishment
and growth of trees to satisfy specific objectives of landowners
with forest stands serving as the main unit of intervention. The
emergence of silviculture as a discipline dates back to the origins
of forest science in Western Europe, with the term having its
linguistic roots in ‘care of the forest’. It was introduced in North
America much more recently, at the beginning of the twentieth
century. Like forest sciences, silviculture did not originate from a
desire to harvest trees but from a need to avoid deforestation,
promote forest productivity and ensure a continued supply of
timber (Puettmann et al. 2012; Gélinas 2010).

Since its origins as a discipline, silviculture has been inherently
empirical with a foot in the past, looking to the future. Lifelong
growth observations and assessment of consequences of past
practices inform current management strategies with the view
that these past conditions will accurately reflect future growth
potential and stand responses to the local environment. Local
climate and soil characteristics are considered permanent fea-
tures of a site, which determine its potential vegetation and drive
its succession dynamics. Accordingly, the majority of silvicultural
studies in the scientific literature involve testing the effects of
silvicultural treatments on various stand characteristics such as
composition (Angers et al. 2005; Webster and Jensen 2007),
growth and yield (Roberts and Harrington 2008; Bose et al. 2018;
Moreau et al. 2020a), mortality (Caspersen 2006; Thorpe et al.
2008), wood properties (Jaakkola et al. 2005; Peltola et al. 2007)
and regeneration (Shields et al. 2007; Poznanovic et al. 2013),
each typically considered in isolation of the others. The response
is analyzed and interpreted, with consideration to local site char-
acteristics and recommendations prepared on the applicability of
the tested approaches for practitioners.

In practice, silviculturists have tended to use such results
in conjunction with their own observations and experience to
apply sequences of silvicultural interventions, which have been
known to produce desirable outcomes in terms of growth, stand

composition or wood attributes on a given site. Such scenarios
of silvicultural treatments are organized into a limited number of
silvicultural systems principally based on regeneration methods
and their subsequent impacts on stand structure (Ashton and
Kelty 2018). One important drawback of this approach is the
standardization of forest practices, which over time can result in
the simplification of forest structure and composition, and in turn
affect ecosystem functions (Bauhus et al. 2009; Puettmann et al.
2012). Here, we argue that a purely empirical approach to silvi-
culture has become increasingly difficult to justify in the context
of unprecedented socio-environmental changes affecting forests
worldwide.

First, the process of defining and pursuing silvicultural objec-
tives is inevitably more challenging when multiple stakeholders
are taken into account or even involved in forest management
decisions (Fürstenau et al. 2007; Puettmann et al. 2015). While
the multiplicity of potential objectives has long been recognized
(Nyland 1996), expectations of the public on the broader sus-
tainable use of the forest resource beyond timber production
are becoming increasingly complex, often leaving silviculturists
in the middle of competing expectations (Branca et al. 2020).
Second, oversimplification is hardly justifiable given the increas-
ing number of ecosystem services that forests are recognized
to perform, which in turn depend on maintaining complexity in
forest structures and functions (Puettmann 2011; Messier et al.
2015; Díaz-Yáñez et al. 2020). Third, and most relevant to this
paper, the observed shifts in species distributions, the disruption
of ecological interactions and the changes in ecosystem produc-
tivity induced by climate change (Millar and Stephenson 2015;
Trumbore et al. 2015; Zhang et al. 2018) limit the applicability
of a fully empirical approach to silviculture. The assumption of a
species growing in a stable environmental niche is in many cases
no longer valid, and as a result the fundamental premise of the
past informing the future is being challenged.

Because of these changing realities, silviculturists are now
facing the challenge of prescribing silvicultural treatments to
provide the desired suite of ecosystem goods and services that
is not only diverse but also evolving continuously over time, on a
forested land base being altered at an unprecedented rate. With
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the traditional tools and approaches of silviculture proving to be
insufficient to meet this challenge, the culture of silviculture is
changing.

The need for silviculture to recognize the complexity of the
forested environment, both in terms of changing environmental
conditions and societal demands, has been recognized over the
past decade (O’Hara and Ramage 2013; Messier et al. 2015;
Hagerman and Pelai 2018). In response, there is a growing body
of literature suggesting new principles and approaches of forest
management such as managing forest stands for resilience (Mina
et al. 2020), adaptive silviculture (Yousefpour et al. 2012), multi-
aged management (O’Hara and Ramage 2013) and ecological
renovation management (Prober et al. 2019). We suggest that in
addition to recognizing the complexity of the changing environ-
ment and development of new forest management principles,
silviculturists are using new sets of approaches, methods and
practices to ensure that silviculture can continue to meet rapidly
evolving social demands in equally changing environmental con-
ditions. This process can be described as a change in ‘culture’
in the sense of this new set of shared approaches, objectives
and practices that now characterize the discipline. We argue
this change is so profound that it challenges the definition of
silviculture as a ‘science and art’.

The term ‘art’ in the traditional definition of silviculture rec-
ognizes that silviculturists have to a certain extent relied on a
level of intuition or ‘gut feeling’ in their practice. While recognizing
that instincts—often gained through experience—are valuable,
we must also consider the limitations of the concept particularly
with regards to teaching the next generation of practitioners.
Viewing a discipline as a ‘science and art’ may lead practitioners
in training to underestimate the importance of using the most
up-to-date scientific knowledge as the foundation of their work.
Just as medical surgery was once considered a ‘science and art’, it
is now arguably one of the most advanced scientific professions.
A similar transition is occurring in silviculture, which calls for
a new definition of the discipline. Silviculture is emerging as
an advanced scientific discipline with foundations rooted in our
unprecedented capacity to now (1) observe a forest’s condition,
(2) anticipate its development and (3) apply timely interventions
adapted to current and future conditions.

By reviewing the scientific literature, we propose a definition
of silviculture as a holistic scientific discipline that relies on many
data points or dimensions of measurements throughout the
forest lifecycle, allowing it to be highly dynamic and adaptive
to rapidly changing social, financial and climatic constraints. At
the landscape scale, this concept is referred to as adaptive forest
management (Linder 2000; Bolte et al. 2009). Here, we describe
a framework that can facilitate its practical implementation at a
finer scale i.e. that of forest stands. This conception of silviculture
can be framed by three key verbs that we present as pillars of
the emergence of silviculture as an advanced science: ‘observe,
anticipate and adapt’ (Figure 1).

Origin and scope of the review
The idea for this review initiates from a workshop on the future
of silviculture held in Montreal in March 2019. Researchers and
practitioners from across Canada had the chance to exchange

Figure 1 Our conception of silviculture as holistic scientific discipline is
framed by three key themes: observe, anticipate and adapt.

on both the realities of current silvicultural practice and the new
scientific knowledge and tools needed to adapt to new realities.
Although we recognize that our view of silviculture is inevitably
influenced by our knowledge of Canadian practices, our literature
review was not restricted to any jurisdiction or geographical
area. We believe that despite having reached different levels of
maturity regionally, the progression of silviculture from an art and
science to an advanced scientific discipline is an ongoing process
that is occurring around the world.

A wealth of scientific knowledge has been acquired since the
emergence of silviculture as a discipline, with significant impact
on silvicultural practice. In this review, we focus on the scientific
developments that have occurred in the last 10–20 years to
provide context about the evolution of the discipline for scientists
and practitioners alike. We hope it will be discussed in both com-
munities and stimulate the feedback process between science
and practice, which is key to the evolution of any discipline. More
specifically, we intend to reach the new generation of students
training in forest sciences by demonstrating that silviculture is an
exciting, rapidly developing discipline that can offer key solutions
to current socio-environmental challenges.

Observe
With the increasing requirement to monitor the growth and
development of forest stands, a silvicultural intervention requires
accurate, consistent and in many cases spatially explicit informa-
tion about tree and stand scale attributes before, during and after
its application (Mac Dicken 2015). Forest management has long
relied on field-based observations of growth and yield including
diameter, stocking, height and other inventory standards, which
are then statistically extrapolated across the landscape using
remote sensing. Quick to adopt the use of aerial photography,
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both analogue (Aldrich 1953) and more recently digital imagery
(Goodbody et al. 2019), silviculturists have long been able to
remotely assess stand conditions and develop the appropriate
treatment or strategy. However, aerial photographic interpreta-
tion is known to often be subjective, time consuming and costly,
often with unknown degrees of uncertainty in the estimates
(Thompson et al. 2007). The focus on stand rather than tree
level descriptions also limits tree-focused silvicultural decisions
to be adopted. Similarly, conventional mapping approaches are
not well suited to providing information about a broader range
of ecological goods and services forests are now recognized to
provide, limiting the use of these data to inform non-timber
based silvicultural scenarios.

Excitingly, the past decade has seen a revolution in the
capacity of silviculturists to observe compositional and functional
attributes of trees, forest stands as well as understory vegetation
from the ground, air and from space (Almeida et al. 2019).
Critical to this increased capacity has been the development
and operational use of technologies that allow the 3D structure
of vegetation to be accurately quantified using light detection
and ranging (LIDAR) technology, an active form of remote
sensing that uses pulsed lasers to measure the distance from
the sensor to the tree or stand target as well as other digital
photogrammetric solutions. LIDAR can be mounted in a variety of
platforms, including spaceborne and airborne as well as ground-
based instruments. From aircraft both individual tree and ‘area-
based’ LIDAR estimates are providing unprecedented information
on the current forest stand structural conditions over large areas
(White et al. 2013) and have become an operational technology
in many countries tasked with both updating forest inventories as
well as developing fine scale digital terrain information to inform
forest operations. Ground-based LIDAR systems offer insight into
stem dimensions, taper and branching structure (Maas et al.
2008). While less operational than airborne laser scanner, these
terrestrial systems are providing very detailed descriptions of
stand architecture and individual tree growth dynamics (Côté
et al. 2012). Insights into reconstructing canopies using these
dense 3D point clouds is also fuelling other approaches such as
within canopy photogrammetry-based point clouds (Mulverhill
et al. 2020), allowing a 3D structural view of the canopy to
be developed more cheaply and quickly. In addition to new
sensing technologies, the use of remotely piloted aerial systems
(RPAS, also colloquially known as drones) both above and within
the canopy are providing new insights into the structure of
forest canopies (Coops et al. 2019; Kotivuori et al. 2020). Due
to their ease of deployment, RPAS are offering silviculturists the
capacity to assess tree and stand structure and composition
in near-real time, concurrent with prescription development
and implementation (Hyyppä et al. 2020). In the context of
rapidly changing growth conditions, the importance of canopy
monitoring over time is increasingly important, particularly with
stands no longer seen as static in terms of their conditions.
Increased sensor development and in-forest connectivity to
the internet is allowing near real-time observations of foliage
conditions including foliage chlorophyll content and necrosis,
which inform early warning systems of stresses such as drought,
presence of insects and disease (Culvenor et al. 2014).

Ultimately, innovative silvicultural observation networks pro-
vide for the systematic collection of structured data allowing

for the development of advanced tools to anticipate change
and subsequently adapt silvicultural methods and approaches to
meet a large diversity of needs. Near real-time assessments of
the forest resource also imply that sequences of silvicultural inter-
ventions may be adjusted at any point in time in the forest stand
lifecycle, making the reliance on pre-defined silvicultural scenar-
ios less essential. The fundamental changes brought by these
new observation tools and techniques to silvicultural practice
also ensure data collection and reporting are no longer entirely
dependent on sampling theory. Wall-to-wall assessments from
remote sensing in conjunction with geo-positioning tools used
in forest machinery scheduling allow silvicultural prescriptions to
be fine-tuned in space and time. This implies the forest stands
represented as uniform polygons on forest maps are no longer a
de facto unit of application. Fine-scale, raster-based assessments
of forest conditions can help silviculturists fine-tune silvicultural
prescriptions according to within-stand variability in forest con-
ditions when necessary (Guay-Picard et al. 2015; St-Jean et al.
2021).

Anticipate
The field observations required for the development of forest
growth models cover extended periods of time (Weiskittel et al.
2011). Accordingly, they are generally considered to incorporate
the effects of historical climate variation and mortality on growth.
However, a recognized limitation of empirical growth models is
the underlying assumption that past climate offers insights into
future forest stand growth and mortality (Lieffers et al. 2020).
This assumption will become progressively weaker in regions
where climatic change continues to accelerate (Cox et al. 2000;
Wang et al. 2017). Therefore, forest growth models that do not
incorporate the effects of short- or long-term climate projections
are likely to misrepresent the future. This issue has already been
recognized for short-rotation silvicultural scenarios in which the
initial environmental conditions can have a major impact on the
first few years of stand growth (Almeida et al. 2010).

Incorporating climate drivers into conventional forest growth
models is the obvious first step to enable silviculturists to
make decisions adapted to future growth conditions. Yearly and
monthly climatic metrics such as average temperature and total
precipitation are now commonly used in climate-sensitive growth
models (Tardif et al. 2001), and have contributed to furthering
our understanding of the relationships between tree growth and
climate in recent decades (Canham et al. 2018). However, the
fact that both the long-term conditions and short-term climatic
extremes may alter tree growth suggests there is a need for
integrating dendroclimatiological techniques in silviculture. Using
such techniques, the annual radial growth of trees can be linked
to events occurring at variable severities and time resolutions, i.e.
from short, acute events such as storms or droughts to long-term
trends of increasing temperatures (Canham et al. 2018; Gazol
et al. 2019; Moreau et al. 2020b). This can be achieved using
either data mining strategies or prior knowledge of functional
links between environmental conditions and tree physiology
(Borghetti et al. 2017), although the former option remains
limited by the assumption that the effects of past events can
be projected into the future.
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Process-based physiological models can be used as a com-
plement, so long as a computational structure is provided that
predicts forest growth in units that are useful to silviculturists
(Mäkelä et al. 2000a). For example, the 3-PG model (physiolog-
ical principles predicting growth) meets this requirement (Lands-
berg and Waring 1997) by incorporating simplifications that have
emerged from studies conducted over a wide range of forests
(Landsberg et al. 2003). Likewise, the PipeQual model utilizes
process-based approaches to model tree growth, crown struc-
ture and stem form linked to empirical submodels of timber
quality (Mäkelä 1997; Mäkelä et al. 2000b). Benefits of these
approaches include accommodating variations in the time reso-
lution of events driving tree growth, thereby allowing projections
to be made under different future climate scenarios.

Another challenge to the development of climate-sensitive
growth projections that are useful to silviculturists arises from
the fact that tree growth responses to climatic conditions are
mostly inconsistent over time, and abrupt variability is commonly
observed following a multitude of physiological processes mostly
triggered by stressors such as acute climatic or biotic events
(Peltier and Ogle 2020). For example, Anderegg et al. (2015) doc-
umented widespread negative legacy effects of a severe drought
on tree growth that could outlast the event itself by up to four
years, making post-disturbance relationships between growth
and climate conditions elusive during such periods. Because cli-
matic disturbances are expected to increase both in frequency
and severity with global change (Bell et al. 2004; Gelman 2008;
Seneviratne et al. 2012; Zohner et al. 2020), the temporal variabil-
ity in growth-climate relationships is also expected to increase.
This calls for further consideration of the effects of climate at
multiple spatial and temporal scales into forest growth modelling
efforts destined to assist decision-making in silviculture. To meet
this challenge, dynamic global vegetation models (Montané et al.
2017; Koide and Ito 2018; Xia et al. 2019) offer promising new
insights that are worth exploring in a silvicultural context (Peltier
and Ogle 2020).

Adapt
Climate change is bringing a high level of uncertainty on the long-
term response of forests to silvicultural treatments. While general
recommendations can be derived from projections of future cli-
mate conditions and their anticipated impact on forest dynamics
and on the displacement of the bioclimatic range of species
(Iverson et al. 2008; Novick et al. 2016), silviculturists will require
more targeted information to implement adaptive treatment
scenarios. By linking future climate projections to landscape-
level assessments of forest dynamics as shaped by disturbance
regimes and long-term forest management plans, it is possible
to provide spatially explicit guidance for the implementation of
cost-effective adaptive silvicultural actions. Such targeted imple-
mentation of silvicultural operations and regeneration systems is
key to promoting forest landscapes that are both resistant (i.e.
the ability to resist change (Millar et al. 2007)) and resilient (i.e.
the ability to accommodate change and return to prior condition
(Millar et al. 2007)) to rapid changes in environmental conditions,
and thus maintaining or even increasing future wood supply as
well as other ecosystem services.

Globally, a number of historical silvicultural trials exist, which
were designed to examine the growth and establishment of
various commercially valuable tree species covering a wide range
of environmental conditions. Trees in these plots have in many
cases grown, or died, across the forest estate over recent years,
thus providing detailed data on how species respond to past
climate events or disturbance events. A recent focus of silvicul-
tural science has been to use these existing silvicultural trials
in a way that can offer insights into forest management today
and into the future (D’Amato et al. 2011; Sohn et al. 2016;
Bottero et al. 2017). It is recognized, however, that the analysis
of existing trials, albeit in new ways, will be insufficient to provide
a comprehensive overview of the responses of key species to
current and future conditions (Sohn et al. 2016; Muzika 2017 ;
Roberts et al. 2020).

Yet, current forests have all been shaped by their respective
histories of past disturbances. Across both climatic and distur-
bance regimes, studying current forests also provides opportu-
nities to examine which stands have proven to be the most
resistant and resilient to disturbance and climatic variation over
their lifetime, and which stands have not. By undertaking these
retrospective studies, we can examine for specific species how
past climatic events such as drought (Sohn et al. 2016), distur-
bances including insect and pathogens (Muzika 2017; Roberts
et al. 2020) and windthrow (Gardiner et al. 2013) have affected
tree growth, and quantitatively assess which stand conditions
have proven more resistant and resilient. While drivers differ,
assessments of stand resistance and resilience can follow similar
approaches globally whereby stand structure, composition and
growth are examined to derive projections on the growth of
future forests and their associated uncertainty or risk of losses
(Roessiger et al. 2013; Jactel et al. 2017; Scheller et al. 2018).

Integrating innovative adaptive strategies into silvicultural
practices should also be a key area of development for the
discipline, with special focus on managing post-disturbance
events, specifically harvesting approaches to mitigate the impact
of disturbances (D’Amato et al. 2013). With such knowledge
acquired through a silvicultural lens, the decision to conduct post-
fire salvage harvesting, for example, will be informed not only by
the cost–benefit ratio for the primary wood processor (Barrette
et al. 2017), but also considering other potential key benefits for
the sustainable management of our forests such as regeneration
establishment or the economy of forest communities (Thiffault
et al. 2013).

The silvicultural community has also implemented networks
of assisted migration trials (Isaac-Renton et al. 2014; Nagel et al.
2017), which are among the primary tools envisaged to face the
threat of rapid changes in environmental conditions imposed on
forests. Yet, there are still relatively few implementations of such
trials worldwide. We believe these trials will form the legacy of
current silvicultural scientists to future generations. Over time,
they will help increase our understanding of the vulnerability of
forests to climate change as well as their role as carbon sinks.
They will also help identify species and genotypes with higher
resistance and resilience to multiple stressors, which in turn will
facilitate targeted recommendations for the implementation of
assisted migration and colonization in silvicultural practice. More-
over, alongside historical tree improvement provenance tests,
such trials will feed genomic analyses of breeding populations
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Figure 2 Key steps towards the development of new tools and practical knowledge that will facilitate the implementation of a silviculture designed
to meet societal demands in rapidly changing environmental conditions. We categorize these actions into three main groups i.e. reanalyzing data:
reanalyzing existing silvicultural trials and databases with a new lens to identify key stand attributes associated with the resistance and resilience of
forests to multiple stressors; continuous inventory: developing and mastering new technologies, workflows and infrastructure to provide continuous
forest inventories that will guide silvicultural decision-making; adaptive approaches: implementing bold, innovative silvicultural trials in which a range
of adaptive silvicultural strategies are tested and their performance compared not only in terms of forest growth and wood supplies, but also of
stewardship and social acceptance.

and help provide markers of adaptive traits (Grattapaglia et al.
2009).

Facing unprecedented uncertainties, the science of silviculture
needs to offer bold, unusual and potentially risky silvicultural
experiments to future generations so they can acquire the knowl-
edge that will allow continuous and timely adaptation. However,
the social implications of such innovative silvicultural practices
aiming to adapt to future conditions, and more particularly the
acceptance of communities to these practices, is only begin-
ning to be understood. Existing research suggests that public,

practitioner and stakeholder views are nuanced and contingent.
For instance, assisted migration within a species’ natural range
is largely viewed as an acceptable silvicultural strategy in various
jurisdictions across Canada but less so for movement outside of
natural range (Peterson St-Laurent et al. 2018, 2021). Further-
more, while publics and stakeholders in forest-dependent com-
munities generally recognize assisted migration as an acceptable
strategy, they are skeptical of how decisions about forests are
made and by whom (Peterson St-Laurent et al. 2018). Consider-
ing the ecological, technological, values-based and governance
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dimensions of anticipatory and adaptive management protocols,
the future of silvicultural research must include the integration
of scientific knowledge obtained from diverse forms of expertise
(e.g. the natural and social sciences) (Peterson St-Laurent et al.
2020) as well as input from publics, stakeholders, indigenous
peoples and local communities.

The way forward
The science of silviculture is adapting to a new reality; the
structural and functional attributes of forest ecosystems are
being altered significantly in response to a changing climate, and
the public demands and expectations on forest ecosystems are
becoming increasingly complex, with a broader emphasis on the
sustainable use of forest resources beyond timber production.
The assumption that the past can continue informing the future,
which has been the backbone of silvicultural science, is becoming
weaker, and even flawed as climate change continues to
accelerate. We suggest that a first step towards the development
of new tools and practical knowledge in silviculture should be
the re-examination of existing trials and databases (Figure 2a).
Building on past efforts, silviculturists need to analyze the
results of existing trials with a new lens, to identify key stand
attributes that can be linked with the resistance and resilience of
forests to disturbances, both anthropogenic and natural (Seidl
et al. 2017). Key to this effort will be our ability to link pre-
disturbance stand structure and composition to the species-
and site-specific vulnerability of trees to multiple stressors and
their potential interactions (Jactel et al. 2017). This, in turn,
calls for increased interactions between scientists from different
communities (Lieffers et al. 2020) who have typically developed
their expertise on single forest disturbance phenomena to delve
into the confounding effects of multiple disturbances on a variety
of long-term forest management goals. For this purpose, the
field of silviculture is well placed to lead integration efforts across
natural and social sciences, not only as it provides a common
set of goals and objectives to the participants, but also offers the
tools and intervention capability that are necessary to implement
solutions at a large scale.

Second, to inform such an integration effort, national and
international efforts should be made to standardize existing field
inventory data and tree core protocols into well-documented,
broadly applicable and open-access databases to provide obser-
vations in formats that facilitate model development and sim-
ulations. In parallel, the development of technologies, work-
flows and infrastructure to allow for continuously updating forest
inventory frameworks should be harnessed and implemented
at operational scales, moving from static, decadal inventories
to near real-time forest observation systems driven by a range
of remote sensing data acquired from sensors positioned both
within and above forest canopies (Figure 2b). Observations of for-
est condition used in conjunction with climate-sensitive growth
and yield and risk assessment models will enable silviculturists to
monitor stresses and disturbances over the entire forest landbase
and dynamically adapt any planned sequence of silvicultural
interventions in response to both current and projected condi-
tions. In turn, the advent of such capabilities will make the defi-
nition of empirically derived sequences of silvicultural treatments
less essential.

An important challenge related to this approach is that
there is inevitable uncertainty associated with any projected
trends in societal or environmental conditions. Such uncer-
tainty can become limiting especially in cases where specific
events are identified as drivers of forest condition or growth
(Graumlich 1993; Moreau et al. 2020b). Future distributions
of exotic pests and disease, or societal demands for wood
and/or other forest goods and services are also difficult to
anticipate. To meet the challenge of managing forests under
such uncertainty, foresters should (1) envisage multiple possible
futures by informing their decisions based on projections from
different models when available and (2) implement adaptive
management by frequently reiterating forest condition, forecasts
and objectives (Ogden and Innes 2007; Bernier and Schoene
2009; Gauthier et al. 2014). The ‘observe, anticipate and
adapt’ framework presented in this review could facilitate this
process.

Third, there is an imperative need to learn from natural
disturbances and understand their key characteristics and how
they may be linked to forest resilience, so that they can be
emulated in silvicultural interventions (Long 2009). In parallel,
there is also a need for bold, innovative silvicultural trials including
the implementation of assisted migration, thinning approaches
or regeneration methods in which a range of adaptive silvicultural
strategies are tested and compared (Figure 2c). With our
increased ability to observe forests and monitor change in near
real-time, such trials will provide a continuous flow of information
to guide ongoing adaptation efforts. Importantly, silvicultural
trials can serve as the foundation to acquire and disseminate
new knowledge through ecosystem-specific synthesis review
and outcomes papers, for example, as well as textbooks for
adaptive silvicultural strategies, which are keys to training of the
next generation of silviculturists and forest managers worldwide.
While implementing these trials, more research should also
be conducted in collaboration with social scientists to assess
the social context for different forest management regimes
including social acceptance of the implemented strategies and
practices.

With the clear and present realities of a changing climate and
its associated uncertainties, we believe that this holistic concep-
tion of silviculture as an advanced observational, anticipative and
adaptive discipline is a key to meeting societal demands. This
may be seen as an important new step in the evolution of the
discipline whereby silviculture can be defined as the science of
observing forest condition and anticipating its development to
apply tending and regeneration treatments adapted to a mul-
tiplicity of desired outcomes in rapidly changing realities.
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